Termosolar y renovables

Innovación en energía renovable con soluciones termosolares de última generación

La Tecnología de Generación Termosolar y el papel de CADE en su Evolución

La tecnología de generación solar térmica (Concentrated Solar Power – CSP) es donde todas las capacidades de CADE se materializan claramente desde el inicio del sector, como un socio fuerte y confiable durante todo el ciclo de vida del proyecto, desde la I + D hasta las plantas operativas.

CADE desarrolla nuevos conceptos de tecnología e ingeniería en torno a la mejora de la eficiencia y la disponibilidad de las plantas de CSP existentes, así como nuevos conceptos de tecnología solar térmica aplicados a la industria que consume calor.

CADE: Un Socio Estratégico en la Generación Termosolar

CADE ha emergido como un líder destacado en el sector de la energía solar térmica, jugando un papel crucial en la evolución de esta tecnología desde sus primeras etapas hasta su implementación a gran escala. Su compromiso con la innovación y la excelencia se manifiesta en cada fase del ciclo de vida de los proyectos de CSP, desde la investigación y el desarrollo hasta la operación y el mantenimiento de las plantas.

Investigación y Desarrollo (I+D): Impulsando la Innovación

En el ámbito de la investigación y desarrollo, CADE se ha destacado por su capacidad para generar nuevos conceptos tecnológicos y de ingeniería que promuevan mejoras significativas en la eficiencia y la disponibilidad de las plantas de CSP existentes. Esta etapa es fundamental para abordar los desafíos inherentes a la tecnología CSP, como la optimización de los sistemas de concentración, el desarrollo de materiales más eficientes y la integración de soluciones innovadoras para el almacenamiento de energía térmica.

CADE no solo se enfoca en mejorar las tecnologías existentes, sino que también explora nuevas aplicaciones de la energía solar térmica en sectores industriales que requieren calor. La capacidad de adaptar la tecnología CSP a diferentes contextos y necesidades industriales amplía el potencial de esta fuente de energía y contribuye a su adopción más amplia.

Ingeniería y Construcción: de la Teoría a la Práctica

Una vez desarrollados los conceptos innovadores, CADE juega un papel clave en la ingeniería y construcción de plantas CSP. Su experiencia en la implementación de proyectos permite la materialización de las ideas y conceptos en instalaciones operativas. Desde la selección de los componentes adecuados hasta la gestión de la construcción y la integración de los sistemas, CADE asegura que cada proyecto se ejecute con la más alta calidad y precisión.

La experiencia de CADE en la ingeniería también se refleja en su capacidad para personalizar las soluciones según las especificaciones y requisitos de cada cliente. Esto incluye la adaptación de la tecnología CSP a las condiciones locales y la optimización de los sistemas para maximizar el rendimiento y la rentabilidad de las plantas.

Operación y Mantenimiento: Garantizando la Eficiencia a Largo Plazo

La fase de operación y mantenimiento es crucial para asegurar que las plantas CSP continúen funcionando a su máxima capacidad durante toda su vida útil. CADE ofrece un apoyo integral en esta fase, proporcionando servicios de monitoreo, mantenimiento y optimización. Su enfoque proactivo en la gestión de las plantas asegura que cualquier problema se detecte y se aborde de manera oportuna, minimizando el tiempo de inactividad y maximizando la eficiencia operativa.

Además, CADE se compromete a la mejora continua de sus servicios, utilizando datos operacionales para identificar oportunidades de optimización y aplicar soluciones innovadoras que mejoren el rendimiento y la durabilidad de las plantas CSP.

Petróleo y Gas

Petróleo y Gas

Termosolar y Renovables

Termosolar y Renovables

Generación de Energía

Generación de Energía

Otras Industrias

Otras Industrias

Editar el contenido

Ingeniería de la propiedad

Ingeniería FEED (Front-and-End-Engineering Design)

Selección y evaluación de equipos y sistemas principales

Estudios de viabilidad técnico-económica (CAPEX-OPEX)

Generación Pliegos y Especificaciones EPC

Control de ejecución proyecto EPC

Permitting / Ready-to-Build

Proyecto Básico

Solicitudes y Autorizaciones de proyecto

Tramitación con la Administración

(Municipal/Regional/Nacional)

Ingeniería Básica y Detalle

Ingeniería multidisciplinar para el Desarrollo conceptual y detallado de plantas CSP >50MW:

  • Campo Solar – HTF
  • Generación de Vapor
  • TES – Sistema de almacenamiento térmico en sales fundidas
  • Bloque de Potencia

Procurement

Equipos, Unidades Paquete, Contratistas

Especificaciones de compra y tabulación técnica de ofertas

Seguimiento y supervisión de fabricación y suministro

Inspección en taller y recepción de equipos

Editar el contenido

Soluciones de Proceso

​Campo Solar: ​

  • Equilibrado Hidráulico​
  • Análisis performance 
  • Análisis del estado de tubos: estrategias de sustitución.​
  • Análisis de riesgo de degradación térmica de HTF.​ ​

 

TES: Mejoras sistema de almacenamiento​

  • Estrategias de carga/descarga​
  • Sistemas de drenaje en caliente​
  • Sistemas de gestión de fugas (HTF / Sales)​
  • Simulación de tanques de sales.​
  • Análisis Tren Intercambiadores HTF / Sales​ TGV: Análisis Trenes de Intercambiadores​ ​

 

Sistema de agua de alimentación / Vapor​

  • Desgasificador​ Bombas de alimentación​ Redes de PSVs​
  • Mejoras en sistema de dosificación y muestreo.​
  • Análisis performance turbina de vapor​
  • Estrategias de operación para evitar problemas operacionales (steaming, corrosión, ensuciamiento, choques térmicos)​

Consultoría de Integridad y Performance

Evaluación de condición sistemas y equipos principales. Determinación de daño acumulado, vida remanente y probabilidad de fallo. 

Definición e implementación de Estrategias de Mejora para la operación, disponibilidad y fiabilidad de equipos y sistemas principales (CS/HTF/TES/GV). 

Consultoría de integridad y análisis causa-raíz de fallo en servicio de equipos y sistemas principales. 

Consultoría Técnica (owner’s advisor) para la evaluación y resolución de disputas con proveedores en relación a garantías, rendimiento y/o fiabilidad de equipos y sistemas

Editar el contenido

solidTES – Almacenamiento Térmico

Tecnología de almacenamiento térmico basada en hormigón y áridos

I+D 

Evaluation of the Dispatchability of a Parabolic Trough Collector System with Concrete Storage – EDITOR

Ingeniería Feed y conceptual

Integración con:

  • Procesos existentes (vapor, agua caliente, aceite térmico, aire, electricidad)  
  • Fuentes energéticas existentes (calor residual, PV, vertidos térmicos o eléctricos)
 

Ingeniería Básica y de Detalle

Proyectos Llave en Mano

processCSP – Calor Industrial

Solución para aporte térmico a la industria basado en solar de concentración con tecnología cilindro parabólica o Fresnel y con almacenamiento térmico.

Ingeniería Feed, conceptual y evaluación de tecnologías

Integración con procesos existentes (vapor, agua caliente, aceite térmico, aire, sistemas de frio)

Ingeniería Básica y de Detalle

Proyectos Llave en Mano

Editar el contenido

Planta CSP Digital

Portfolio de digitalización e industria 4.0 enfocado a planta termosolar

Mejora de gestión de activos y O&M bajo paradigma 4.0, desde equipo o activo concreto, unidades o sistemas, hasta planta completa

Modelo 3D inteligente de planta:

  • ESCANEO LASER 3D: Generación de nubes de puntos y modelos fotorrealistas de planta para gestión mejorada
  • MAQUETA 3D INTELIGENTE: Generación de maqueta 3d incluyendo datos e información de activos y operación y mantenimiento

Gemelo digital: monitorización y análisis de activos críticos en tiempo real para toma de decisión y predicción: 

  • Mantenimiento basado en condición y predictivo
  • ANALISIS-MONITORIZACIÓN de estado, integridad, vida y prevención de fallo equipos críticos
  • GEMELO DIGITAL completo de equipos o sistemas con sensorización, monitorización, análisis inteligente, capacidad de simulación y experimentación, para mejora de rendimiento y eficacia del equipo o sistema.

InCycle

Metodología para el análisis y optimización de ciclos de vapor renovables.

  • Análisis de la calidad del agua vs Normativa y estándares del sector
  • Revisión del sistema de muestreo
  • Revisión del sistema de dosificación
  • Análisis del estado actual de equipos:
    • Corrosión (pitting, FAC, bajo depósito, …) 
    • Fouling, performance, by-passes, etc).
    • Daño acumulado por operación actual (fatiga, choques térmicos)
  • Identificación de mejoras operacionales para evitar las desviaciones detectadas (aumento vida útil, mejora rendimiento)
  • Análisis del rendimiento del ciclo
  • Reducción de fugas (PSVs, drenajes, purgadores)

Plantas CSP y 
CADE

Actualmente, 25 plantas CSP operativas en todo el mundo cuentan con CADE regularmente para evaluar, optimizar y mejorar los principales sistemas y equipos críticos de la planta.

Proyectos tipo ejecutados

Editar el contenido
Equipos Estáticos: Tren Generación de Vapor, Tren intercambiadores de Sales, Tanques de almacenamiento de sales
  • Evaluación de cargas nominales y reales parciales vs. proyecto
  • Análisis choques térmicos
  • Evaluación a Fatiga
  • Análisis de vibraciones
Equipos Dinámicos: Bombas Main, Bombas de agua de alimentación, Bombas sales fundidas.
  • Análisis puntos de operación vs curvas de diseño(Q min, Q max, BEP)
  • Análisis de vibraciones
  • Análisis O&M Vs, operación
Principales Resultados Obtenidos:
  • Evaluación del daño acumulado y determinación de vida remanente
  • Identificación de límites operaciones (choques térmicos, rampas de calentamiento, caudales)
  • Identificación de mejoras operacionales, mejoras de mantenimiento y mejoras mecánicas
  • Optimización de consumo de bombas
  • Identificación de pérdidas térmicas
  • Estado del mantenimiento general de la planta o sistemas de la planta
Editar el contenido
Simulación térmica e hidráulica de los intercambiadores HTF/Sales
  • Simulación de los intercambiadores de calor de acuerdo a documentación de fabricante
  • Análisis de datos de operación según DCS
Principales Resultados Obtenidos
  • Optimización de entrega de energía y curva de carga/descarga: Curvas de energía intercambiada en función de caudales de operación
  • Influencia e identificación del ratio Q HTF / Q SALES Vs. Temperatura de tubos: Integración de seguridades en DCS para evitar alcanzar los límites establecidos por el fabricantes
  • Límites operacionales debido a vibraciones
Simulación de eventos de fallo: Operación del sistema con el resto de intercambiadores
Principales Resultados Obtenidos:
  • Curva de potencia en función del número de intercambiadores disponibles
  • Diseño de sistema by-pass para operar en caso de fallo. Ingeniería básica y detalle.
Editar el contenido

CADE se posiciona a la vanguardia de la transición hacia un futuro energético sostenible con su enfoque en el hidrógeno renovable. Con una sólida trayectoria en proyectos pioneros, desde la producción hasta el almacenamiento de hidrógeno, ofrecemos soluciones innovadoras que responden a las necesidades de descarbonización global. Nuestro compromiso con la I+D nos permite desarrollar tecnologías avanzadas que no solo cumplen, sino que superan los objetivos establecidos en la Hoja de Ruta del Hidrógeno en España.

  • Proyectos pioneros en producción de hidrógeno mediante gasificación en agua supercrítica de biomasas.

  • Desarrollo de tecnologías propias para producción, almacenamiento y valorización de hidrógeno renovable.

  • Alineación con la Hoja de Ruta del Hidrógeno en España, contribuyendo a la descarbonización y sostenibilidad.
Editar el contenido
  • Análisis del rendimiento del resto de equipos disponibles bajo la hipótesis de fallo de alguno de los equipos del tren
  • Análisis del incremento de caudal potencial en el resto de equipos disponibles para compensación por reducción de producción del equipo que presenta fallo
  • Diseño de sistema by-pass (ingeniería básica y de detalle)
Editar el contenido
Análisis causa raíz para determinar el origen de la aparición de grietas en los techos de los tanques de sales y definición de propuestas de mejora y solución del problema.
  • Inspección de los tanques (inspección visual, medición de espesores, identificación de zonas con corrosión interna mediante metodología MRUT, control y medición de temperaturas en zonas calientes del tanque)
  • Análisis de datos de operación según DCS
  • Simulación térmico-estructural en condiciones de operación norma
  • Evaluación frente a fatiga y choques térmicos
  • Simulación del tanque durante el proceso de precalentamiento
  • Evaluación de los asentamientos de la cimentación en el comportamiento estructural del tanque
  • Evaluación de vibraciones en sistemas de tuberías
  • Evaluación de la corrosión por efecto de contaminación de tanques con aire.
  • Evaluación de Stress Corrosion Cracking (SCC).
  • Análisis químico de las sales
Principales Resultados Obtenidos:
  • Identificación de riesgo mecánico asociado a vibraciones en conexiones
  • Identificación de riesgo mecánico en tubuladuras debido al efecto de los asentamientos
  • Identificación de riesgo mecánico debido a al proceso de precalentamiento
  • Identificación de riesgo mecánico debido a vibraciones
Editar el contenido
  • Calidad del agua: revisión de condiciones de operación (DCS y analíticas de planta) Vs. Valores recomendados
  • Efecto/Impacto de la calidad del agua sobre los equipos principales
    • Intercambiadores: corrosión, deposiciones, pérdida de performance
    • Turbina de vapor: Fouling (Na, Si, Óxidos metálicos) y pérdida de performance
  • Análisis mechanical carryover en Generador de Vapor (fouling del SuperHeater y Turbina de Vapor)
  • Revisión del sistema de dosificación.
  • Revisión del sistema y procedimientos de muestreo.
  • Análisis térmico de intercambiadores: identificación de by-pass, ensuciamiento, steaming.
  • Análisis mecánico de intercambiadores de TGV (daño acumulado por operación, límites operacionales)
  • Definición de procedimientos de puesta en marcha y parada para la reducción de steaming, corrosión y ensuciamiento en equipos.
  • Definición de estrategias de operación para aumentar la vida útil del TGV.
Editar el contenido
  • Herramienta de ingeniería para la monitorización de fouling de la Turbina de Vapor
    • Cálculo fouling rate
    • Determinación de tiempos hasta siguiente parada para mantenimiento y limpieza
Editar el contenido
  • Identificación de puntos susceptibles de presentar acumulación de N2 y cálculo de N2 acumulado
  • Evaluación de requerimientos de venteo en función de su influencia en equipos aguas abajo
  • Diseño e ingeniería de sistema de venteo
Editar el contenido

Diseño térmico/hidráulico/mecánico

Selección de proveedores

Supervisión de documentos de ingeniería del fabricante

Revisión de diseño de fabricantes y recomendaciones

Inspecciones en taller

  • Generador de Vapor (Tipo Kettle) (HTF/Vapor)(Sales/Vapor)
  • Generador de Vapor (Tipo Circulación Forzada) (HTF/Vapor)(Sales/Vapor)
  • Economizador (HTF/Vapor)(Sales/Vapor)
Editar el contenido
  • Análisis de boroscopias
  • Análisis de mediciones de espesores
  • Análisis de muestras (análisis de elementos y compuestos)
Principales Resultados Obtenidos:
  • Análisis de mecanismos de fallo (failure mechanism): steaming, vaporización, corrosión, choque térmico, congelación, pandeo, SCC, etc.
  • Influencia sobre rendimiento térmico
  • Influencia sobre vida remanente
  • Propuesta para la monitorización y medidas de mejora
Editar el contenido
  • Inspección visual
  • Medición de espesores
  • Identificación de zonas con corrosión generalizada y corrosión local mediante metodología MRUT
  • Estudio señales DCS
  • Análisis térmico-estructural frente a condiciones de operación normal y choques térmicos
  • Análisis a fatiga
  • Realización de metalografías y réplicas metalográficas
  • Estudio de la lógica de funcionamiento del sistema de traceado.
  • Análisis químico de las sales
  • Análisis de corrosión. Análisis de muestras (análisis de elementos y compuestos)
Principales Resultados Obtenidos:
  • Análisis de mecanismos y causas de fallo: sobrecalentamientos asociados al traceado, corrosión por efecto de degradación de las sales.
  • Propuesta para la monitorización y medidas de mejora
  • Definición de una lógica de control óptima
  • Definición de un plan de mantenimiento predictivo.
Editar el contenido
Análisis causa raíz para determinar el origen de rotura de las ball joint. Definición de medidas correctoras y propuestas de mejora. Definición de plan de mantenimiento predictivo.
  • Inspección en planta
  • Evaluación de los históricos de fallo
  • Definición patrón de fallo
  • Análisis de datos de operación según DCS
  • Simulación térmico-estructural del colector solar, del sistema de ball joint y de los tubos receptores
  • Evaluación frente a fatiga y choques térmicos
  • Análisis de detalle de las rótulas y simulación proceso de bloqueo de las mismas
Análisis causa raíz para determinar el origen de rotura de los tubos receptores
  • Inspección en planta
  • Evaluación de los históricos de fallo
  • Definición patrón de fallo
  • Análisis de datos de operación según DCS
  • Simulación térmico-estructural del colector solar, tubos receptores y sistema ball joints
  • Evaluación frente a fatiga y choques térmicos
  • Evaluación pérdida de vacío en los tubos
  • Evaluación efecto de la radiación
Análisis causa raíz para determinar el origen de la rotura de los patines y las deformaciones del cross over
  • Inspección en planta
  • Análisis térmico-estructural del colector solar y del sistema cross over
  • Evaluación del mal funcionamiento de los patines y del sistema de ball joint
  • Evaluación efecto de choques térmicos y análisis a fatiga
  • Evaluación grandes deformaciones del sistema cross over
Editar el contenido
  • Sistema de tuberías de drenaje de sistema HTF y sistemas de protección anticongelamiento para reducir el tiempo de paradas y mejorar los requisitos de seguridad del sistema (bombas HTF, equipos isla de potencia, calderas, etc)
  • Diseño de sistema de drenaje de sales fundidas y sistema de separación de sales-HTF (en caso de fallo de intercambiadores)
  • Sistema By-Pass del campo solar. Independización campo solar-bloque de potencia
  • Sistema By-Pass Tren generación de vapor. Mejora de disponibilidad
  • Sistema By-Pass Tren sales. Mejora de disponibilidad
  • Sistema By-Pass LP Preheaters. Mejora de mantenimiento
  • Definición de válvulas de control de calderas HTF (control de temperatura en superficie de tubos de caldera)
  • Optimización de nivel de HTF en sistema de expansión para la eliminación de bolsas de N2
  • Evaluación e implementación de modificaciones de planta para la realización de las pruebas de presión pertenecientes a inspección de nivel C
  • Diseño de sistema de condensado y enfriamiento de HTF/N2 para disparos de PSVs: Diseño de tanque Quench
Editar el contenido
Haz clic en el botón editar contenido para editar/añadir el contenido.

Albacete

Parque Científico y Tecnológico

Paseo de la Innovación 3, 02006 Albacete – España

Tel. +34 967 19 01 72

Madrid

C/Raimundo Fernández Villaverde, 53 (Entreplanta)

28020

Madrid – España

Albacete

Parque Científico y Tecnológico

Paseo de la Innovación 3, 02006 Albacete – España

Tel. +34 967 19 01 72

Madrid

C/Raimundo Fernández Villaverde, 53 (Entreplanta)

28020

Madrid – España

Contáctanos

Veo que te interesa lo que hacemos

Si quieres escríbenos sobre tu proyecto y te informaremos de como te podemos ayudar

¡No te vayas!

Te informamos de nuestras soluciones de ingeniería